1,2-cis- β -Mannopyranoside Formation by the Dimethylphosphinothioate Method

Takashi YAMANOI, Kazumi NAKAMURA, Hiroshi TAKEYAMA,

Kenji YANAGIHARA, and Toshiyuki INAZU*

The Noguchi Institute, 1-8-1, Kaga, Itabashi-ku, Tokyo 173

1,2-cis- β -Mannopyranosides were obtained predominantly by reactions of mannopyranosyl dimethylphosphinothioate derivatives with several alcohols in the presence of iodine and a catalytic amount of triphenylmethyl perchlorate as the activator in benzene.

In carbohydrate chemistry, a highly stereoselective \underline{O} -glycosidation is very significant for the synthesis of complex oligosaccharides. In recent years new methods for stereospecific glycosidation have been reported. However the formation of 1,2-cis- β -mannopyranosidic linkage in the carbohydrate chain of \underline{N} -glycoproteins remains a serious problem owing to its steric repulsion and anomeric effect. \underline{O}

Although several examples of 1,2-cis- β -mannopyranosylation reaction have been reported, such as S_N^2 reaction using insoluble silver silicate³⁾ and intramolecular glycosylation,^{4,5)} they seem not to be easy to apply to the synthesis of oligosaccharides.

Mannopyranosylation could be assumed as follows. Although 1,2-cis- β -mannopyranosides could be produced even by most reported glycosidation methods, 1,2-cis- β -mannopyranosides would be immediately converted to 1,2-trans- α -mannopyranosides by acidic components from the activators. Certain 1,2-cis- β -mannopyranosides could be obtained without anomerization under

the conditions reducing acid as little as possible.

We previously reported glycosidation using glycosyl dimethylphosphinothicate in the presence of iodine and a catalytic amount of triphenylmethyl perchlorate (${\rm TrtClO}_4$) as the activator. Attention was directed to the catalytic amount of ${\rm TrtClO}_4$ in the glycosidation, and 1,2-cis- β -mannopyranoside synthesis was attempted by this method.

First, we examined reactions of 2,3,4-tri- $\underline{0}$ -benzyl-6-deoxy- \underline{L} -mannopyranosyl dimethylphosphinothioate (1) and 3 β -cholestanol (2) with various amounts of $\mathrm{TrtClO_4}$. Although only 3 β -cholestanyl 1,2-trans- α -mannopyranoside (3- α) was obtained using 50 mol% amount of $\mathrm{TrtClO_4}$ (entry 1), 3- β was synthesized predominantly following reduction of $\mathrm{TrtClO_4}$ to 5 mol% (entry 3). The time-course of the anomer ratio of the reaction mixture was measured by HPLC, but no anomerization could be detected. Unfortunately 3- α was predominantly obtained by the reaction using a still smaller amount of $\mathrm{TrtClO_4}$ (entries 4 and 5).

Iodine was found essential for this reaction. Iodide anion appeared to be related in some manner to the selectivity (entries 5-11).

Further we examined this reaction using several solvents, such as benzene, toluene, fluorobenzene and dichloromethane. Benzene and fluorobenzene were particularly effective (entries 3 and 8). It was of interest that the molecular size of effective solvents were similar.

Based on the above results, the reaction mechanism except for entries 4 and 5 was considered to be as follows. Mannosyl perchlorate, possibly generated by the reaction of 1 and $TrtClO_4$, immediately reacted with iodide ion to afford α -mannosyl iodide containing solvent molecule. The reaction of alcohol and this intermediate might give the β -mannoside predominantly without anomerization.

Other β -mannosides were obtained using various acceptors. Similarly 2,3,4,6-tetra- \underline{O} -benzyl- $\underline{\underline{D}}$ -mannopyranosyl dimethylphosphinothioate (4) gave the corresponding 1,2-cis- β -mannoside predominantly (entry 15).

On the other hand, 4-O-acyl mannosyl donors were known to increase

Table 1.a) Mannopyranosylation reactions using I2-cat.TrtClO4

Entry	Acceptor	Activator(equiv.)	Solvent	Yield/%	α/βb)
1	3β-Cholestanol(2)	I ₂ (1)-TrtClO ₄ (0.5)	PhH	94	α
2	2	$I_2(1) - TrtClO_4(0.1)$	PhH	93	60/40
3	2	$I_2(1) - TrtClO_4(0.05)$	PhH	76	40/60
4	2	$I_2(1) - TrtClO_4(0.023)$	PhH	84	80/20
5	2	I ₂ (1)	PhH	79	α
6	2	$I_2(1) - TrtClO_4(0.05)$	CH_2Cl_2	71	α
7	2	$I_2(1) - TrtClo_4(0.05)$	PhCH ₃	78	90/10
8	2	$I_2(1) - TrtClO_4(0.05)$	PhF	76	38/62
9	2	$I_2(0.5) - TrtClo_4(0.05)$	PhH	52	61/39
10	2	$I_2(0.25) - TrtClo_4(0.05)$	b) PhH	33	53/47
11	2 NaI(1)	$-1_{2}(0.25)-TrtClO_{4}(0.05)$) PhH	18	37/63
12	6	$I_2(1) - TrtClO_4(0.05)$	PhH	46	69/31
13	7	$I_2(1) - TrtClo_4(0.05)$	PhH	50	45/55
14	8	$I_2(1) - TrtClO_4(0.05)$	PhH	69	50/50
15 ^C)	2	$I_2(1) - TrtClO_4(0.05)$	PhH	67	30/70
16 ^d)	2	$I_2(1) - TrtClO_4(0.05)$	PhH	85	18/82
17 ^d)	6	$I_2(1) - TrtClO_4(0.05)$	PhH	47	43/57
18 ^d)	7	$I_2(1) - TrtClO_4(0.05)$	PhH	52	23/77
19 ^d)	8	$I_2(1) - TrtClo_4(0.05)$	PhH	61	35/65

a)Molar ratio; 1: acceptor= 1: 1. b)The anomer ratios were determined by HPLC and ^1H NMR. c)Compound 4 was used as a donor. d)Compound 5 was used as a donor.

 β -selectivity by through-bond interactions and/or participation of the $4-\underline{0}$ -acyl group.^{2,8)} The reactions of the $4-\underline{0}$ -benzoyl derivative 5 with various acceptors were consequently carried out to afford 1,2-cis- β -

mannosides in high selectivity up to $\alpha/\beta=18/82$ (entry 16).

More detailed research is presently being conducted.

We are deeply indebted to prof. Teruaki Mukaiyama, Science University of Tokyo, for his helpful discussions. A part of this work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No.03740292), and the Special Coodinanation Funds of the Science and Technology Agency of the Japanese Government.

References

- 1) H. Paulsen, Angew. Chem., Int. Ed. Engl., 21, 155 (1982); R. R. Schmidt, ibid., 25, 212 (1986); K. Suzuki and T. Nagasawa, Yuki Gosei Kagaku Kyokai Shi, 50, 378 (1992); references cited therein.
- 2) C. A. A. van Boeckel, T. Beetz, and S. F. van Aelst, Tetrahedron, 40, 4097 (1984).
- 3) H. Paulsen and R. Lebuhn, Libigs Ann. Chem., 1983, 1047.
- 4) F. Barresi and O. Hindsgaul, J. Am. Chem. Soc., 113, 9376 (1991).
- 5) G. Stork and G. Kim, J. Am. Chem. Soc., 114, 1087 (1992).
- 6) T. Inazu and T. Yamanoi, Chem. Lett., 1989, 69.
- 7) A typical procedure was similar to those described before. See Ref.6.
- 8) T. Inazu, K. Nakamura, Y. Furusawa, and T. Yamanoi, 62nd National Meeting of the Chemical Society of Japan, Sapporo, September 1991, Abstr. No. 2E2 11.

(Received November 24, 1992)